Boundedness of fractional integrals on ball Campanato-type function spaces

نویسندگان

چکیده

Let X be a ball quasi-Banach function space on Rn satisfying some mild assumptions and let α∈(0,n) β∈(1,∞). In this article, when α∈(0,1), the authors first find reasonable version I˜α of fractional integral Iα Campanato-type LX,q,s,d(Rn) with q∈[1,∞), s∈Z+n, d∈(0,∞). Then prove that is bounded from LXβ,q,s,d(Rn) to if only there exists positive constant C such that, for any B⊂Rn,|B|αn≤C‖1B‖Xβ−1β, where Xβ denotes β-convexification X. Furthermore, extend range α∈(0,1) in also obtain corresponding boundedness case. Moreover, proved adjoint operator Iα. All these results have wide applications. Particularly, even they are applied, respectively, mixed-norm Lebesgue spaces, Morrey local generalized Herz all obtained new. The proofs strongly depend dual theorem special atomic decomposition molecules HX(Rn) (the Hardy-type associated X) which proves predual LX,q,s,d(Rn).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Boundedness of Oscillatory Singular Integrals on Weighted Sobolev Spaces

In this paper, an oscillatory singular integral operator T deened by T f (x) = Z IR e ixP(y) f (x ? y) y dy is showed to be bounded on a weighted Sobolev space H

متن کامل

Boundedness of Marcinkiewicz Integrals with Rough Kernel on the Herz-Type Spaces

In this note, it is proved that the Marcinkiewicz integral with rough kernel defined by

متن کامل

Boundedness of higher-order Marcinkiewicz-Type integrals

Let A be a function with derivatives of order m and DγA∈ Λ̇β (0 < β < 1, |γ| =m). The authors in the paper proved that ifΩ∈ Ls(Sn−1) (s≥ n/(n−β)) is homogeneous of degree zero and satisfies a vanishing condition, then both the higher-order Marcinkiewicz-type integral μΩ and its variation μ̃ A Ω are bounded from L p(Rn) to Lq(Rn) and from L1(Rn) to Ln/(n−β),∞(Rn), where 1 < p < n/β and 1/q = 1/p− ...

متن کامل

Fractional type Marcinkiewicz integrals over non-homogeneous metric measure spaces

*Correspondence: [email protected] College of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, People’s Republic of China Abstract The main goal of the paper is to establish the boundedness of the fractional type Marcinkiewicz integralMβ ,ρ ,q on non-homogeneous metric measure space which includes the upper doubling and the geometrically doubling conditions. Under the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin Des Sciences Mathematiques

سال: 2023

ISSN: ['0007-4497', '1952-4773']

DOI: https://doi.org/10.1016/j.bulsci.2022.103210